
Semiclassically weak reflections above analytic and non-analytic potential barriers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 3693

(http://iopscience.iop.org/0305-4470/15/12/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 3693-3704. Printed in Great Britain 
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Abstract. The coefficient r for reflection above a barrier V ( x )  is computed semiclassically 
(i.e. as h+O) employing an exact multiple-reflection series whose mth term is a (2m + 
1)-fold integral. If V ( x )  is analytic, all terms have the same semiclassical order (exp(-h-')); 
the multiple integrals are evaluated exactly and the series summed. If V ( x )  has a 
discontinuous Nth derivative, the term m = 1 dominates semiclassically and gives r - hN. 
If V ( x )  has all derivatives continuous but possesses an essential singularity on the real 
axis, the term m = 1 again dominates semiclassically, and for V -exp(-lx$") gives r - 
exp(-h-"""+')) with an oscillatory factor corresponding to transmission resonances. The 
formulae are illustrated by computations of /r/' for four potentials with different continuity 
properties and show the limiting asymptotics emerging only when the de Broglie 
wavelength is less than 1% of the barrier width and jr12- 

1. Introduction 

Consider a beam of quantum-mechanical particles with energy E and mass CL incident 
from x = --CO above a one-dimensional continuous potential barrier V ( x )  possessing 
a single maximum of height Vo(<E) at x = 0 (figure 1). In the classical limit, i.e. when 
Planck's constant h equals zero, there is no reflection from such a barrier. In the 
semiclassical limit, i.e. as h tends to zero, there is weak reflection, and this paper is 
devoted to studying in leading-order asymptotics precisely how the reflection 
coefficient r vanishes with h.  

Figure 1. Scattering geometry and notation 

Two contributions are made to this venerable problem by employing an exact 
representation of r (0 2) as a convergent multiple-reflection series whose terms are 
multiple integrals. Firstly, for the case where V ( x )  is analytic, it is shown (8  3) that 
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3694 M V Berry 

all terms of the series are of the same order in h (i.e. exp (-h-’)), and the multiple 
integrals are evaluated and summed explicitly. Although the resulting ‘WKB reflection 
formula’ is well known (see e.g. Froman and Froman (1965), Pokrovskii and Khalat- 
nikov (1961) or the review by Berry and Mount (1972, hereinafter called BM)), it is 
instructive and novel to see an asymptotic result emerging from a convergent series. 
Pokrovskii et a1 (1958), employing a slightly different formalism, were the first to 
point out that the asymptotic r can be expanded in this way, but they failed to evaluate 
the multiple integrals involved. 

Secondly, for the non-analytic case it is shown how r depends on the continuity 
class of V(x). Two situations are examined in 00 4 and 5 :  where the Nth derivative 
of V ( x )  (and none lower) is discontinuous (in which case r - h N ) ,  and where all 
derivatives are continuous but V ( x )  has an essential singularity at its maximum (in 
which case r depends on the type of singularity, but is smaller than hN for any N 
though greater than exp(4- I ) ) .  This dependence on continuity class was conjectured 
by Mahony (1967) and proved by Meyer (1975, 1976), but these authors did not give 
explicit formulae for r for non-analytic potentials. This asymptotic dependence of r 
on continuity class arises because in the semiclassical limit the de Broglie wavelength 
is vanishingly small and discriminates fine details of V(x). 

The different reflection formulae are illustrated in § 6 by computations for four 
potentials with different continuity properties. 

To avoid confusion it is worth mentioning that I shall not consider the high-energy 
limit (which is different from the semiclassical limit-see BM), the higher-order correc- 
tions to asymptotic formulae for r (see Lundborg 1979), or the ‘barrier-skimming’ 
behaviour of r as E approaches Vo (see BM). 

2. Convergent multiple-reflection expansion 

It is convenient to work with the momentum function 

p ( x ) = [ 2 p ( E  - V ( x ) ) y  (1) 
defined as positive for real x .  Then Schrodinger’s equation for the wavefunction * ( x )  
is 

d2+/dx2i(p2(x)/h2)* = 0. (2) 
To lowest order in A (BM) this has the ‘WKB’ solutions 

e*lwcx)/(p(x))l/2 * -  
where W is the phase integral defined as 

The plus and minus signs in (3) correspond to waves travelling in the positive and 
negative x directions, and in this approximation there is no coupling between these 
waves and hence no reflection. In reality, of course, there is reflection, and this indicates 
the inadequacy of (3). 

To obtain a more useful formalism, +b is written exactly as 

rl, = b+( W ( x ) )  eiw‘x’(p(x))-’/2+6-( W(x)) e-iwcx’(p(x))-’/2. ( 5 )  



Semiclassical 1 y weak reflections 3695 

The coefficients b ,  will be considered as functions of W rather than x, and this is 
possible because the mapping (4) between W and x is one-to-one on the real axis. 
At /x i  = fa, V + 0 and p ( x )  = ( 2 ~ E ) l ’ ~  = constant and the solutions (3) are exact, so 
that b,(* W) + constant as W + *a, The scattering geometry of figure 1 corresponds 
to 

b,(-co) = 0 b - ( + a )  = 0 ( 6 )  
and the reflection and transmission coefficients may be defined as 

r = b-(-co) t = b+(+a) .  

In the decomposition ( 5 ) ,  the single unknown function 1+4 has been replaced by the 
two unknown functions b,, and a subsidiary condition is necessary in order for the 
6, to be defined uniquely. For present purposes the simplest condition (but not the 
only one) is 

d 4  i 
.- 

dx h ( p ( ~ ) ) ” ~ ( b + (  W) e i w  -b-( W) e-iW). (7)  

Then the Schrodinger equation (2) gives, for the equations satisfied by b ,  and b-,  

db,( W)/d W = S (  W)b,( W) eFZiW (8) 

where 

(9c 

In this maximally simple representation it is clear that coupling between b+ and b-, 
and hence reflection, arises from variations in p ( x )  and hence of the potential V(x), 
i.e. from forces acting on the particles, as embodied in the function S (  W). 

It is natural to integrate both sides of (8) and solve for b ,  by iteration using the 
boundary conditions (6 ) .  For the reflection coefficient r this gives, on using (7), the 
infinite series 

r = -  dWo S (  WO) e2Iwn+ dWo S (  WO) e21wc1 
00 X 

I., I_, 
X 

dV1 S (  Vl) e-2iv1 jvl d W1 S (  W,) e2Iw1 - . . .  

00 

x lVm d W, S (  W,,) eZiWpt 

where the product is defined as unity for m = 0. Bremmer (1951) and Landauer 
(1951)  (see also BM) obtained this series by considering the potential as the limit of 
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a 'staircase' in which V(x) is approximated as piece-wise constant with tiny discon- 
tinuities. The mth term in r then acquires a physical interpretation, as the wave 
arriving at x = -a after all combinations of 2m + 1 reflections at the steps of the 
potential. 

Atkinson (1960) proved that the series (10) is convergent provided 

For potential barriers with a single hump as in figure 1 this implies 

E t Vo/(l  -e-2n) = 1.00187 VO (12) 

and this not very restrictive condition will henceforth be assumed. 
The task now is to find semiclassical approximations to the terms in the exact 

series (10). These terms are (2m + 1)-fold multiple oscillatory integrals, whose 
asymptotics are dominated by the singularities of the functions S(W).  For analytic 
potentials, to be considered first, the singularities lie in the complex planes of the 
variables WO.  . . Vm. For non-analytic potentials the singularities are real. 

3. Analytic barriers 

If V(x) is analytic on the real axis, then so are the functions p ( x ) ,  W(x) and S (  W) 
defined by ( l ) ,  (4) and (9). Contributions to the integrals in (10) arise from points 
W* in the complex planes of WO. . . V,, at which S ( W )  is singular. The commonest 
such singularities are the complex first-order turning points x * where 

E = V(x*) (13) 
at which p2(x) has a simple zero, but it causes no difficulty to consider the more 
general case where, close to x *, 

p(x)=A(x -x*)" '~ (14) 
corresponding to a turning point of order v if v > O  and a pole or branch point of 
order v in V(x) if v <O. It is easy to show from (4) and ( 9 b )  that at any of these 
singularities S (  W) has a simple pole, whose residue depends on the order v, as 

v 
S (  W) = 

2(v + 2)( w - W*)' 

By considering the alternating signs of the phases in (10) it appears that the 
contours can be deformed so as to extract the contribution of W* only if W* lies in 
the upper half-plane. It now follows that 

where 

in which E is a positive infinitesimal. 
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In these formulae, Planck's constant appears only in W*, which is defined by the 
complex integral 

1 I* 
W*=j-jo dxp(x). (18) 

Because Im W* > 0, the dominant contribution to r comes from the singularity closest 
to the real axis. The I, in (17) are pure numbers, so that all terms in the multiple- 
reflection expansion do indeed have the same order of magnitude, as asserted. 

It is shown in appendix 1 that 

2 m  
lr I, = 

(2m + l)! '  

Now the series (16) can be summed to give 

l r V  
r = -2i eziw* sin (-). 

2(u +2)  

This is the semiclassical limit of the reflection coefficient from a vth-order turning 
point, previously obtained either by analytic continuation of basic WKB solutions (3) 
across Stokes' lines (BM) (e.g. by Pokrovskii and Khalatnikov 1961) or by comparison 
with the known solutions of appropriately chosen model equations (Langer 1937). 

The commonest case is U = 1, for which the reflected intensity is 

4 
ir12 = exp( - Im 1' dx p (x)). 

The multiple-reflection series (16) converges very rapidly in this case: the coefficient 
unity of the semiclassical exponential for lrl is approximated by 1.047 for one reflection, 
0.9993 for three reflections, and 1.000004 for five reflections. Higher-order turning 
points can be produced by the coalescence of lower-order ones by varying E or 
parameters in V(x). For example, if 

v = ~ ~ e x p [ - ( x ~ + 2 a ~ ~ ~ ) / ~ ~ ]  (22) 

then for E > Vo exp(a4/L4) there are two first-order turning points with the same 
positive value of Imx* and for E < Vo exp(a4/L4) there are two first-order turning 
points on the positive imaginary x axis with different values of Imx*. These coalesce 
when E = Vo exp(a4/L4) to give a second-order turning point at x *  = ia. 

4. Barriers with Nth derivative discontinuous 

It is simplest and causes no essential loss of generality to let the discontinuity in the 
Nth derivative of the potential lie at x = 0, i.e. W = 0. Define 

p o ~ p ( O ) = [ 2 p ( E  - VO)]"~ 

and 
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and realise that close to the discontinuity the mapping (4) gives 

W(x) =pox/k. (25) 

By Taylor expansion in powers of W, the singular part of the function S ( W )  
(equation (9)), which is what contributes to the asymptotic r in the representation (lo), 
is easily found to  be 

where 0 denotes the unit step function. 
On substituting Sslng into (10) it is clear that the mth multiple integral contributes 

a term of order to Zt(2mC1)N to r .  Therefore the semiclassical reflection is dominated 
by the first term, in contrast to analytic barriers, for which all terms have the same 
order. The first integral in  (10) is easily evaluated, with the result (valid if N >0) 

The procedure employed here, of replacing S by Ssing, is precisely equivalent to 
asymptotically evaluating the integrals for r by repeated integration by parts. 

In appendix 2 it is shown how the formula (27) can be alternatively obtained by 
matching Nth order semiclassical approximations across the singularity. 

5. Essentially singular barriers with all derivatives continuous 

It will obviously not be possible to give an explicit general formula for r covering all 
conceivable varieties of non-analyticity. Therefore attention will be restricted to 
potentials having a single essential singularity at x = 0, of the type 

V(X) = v0(1 - exp(-L'"//x I " ) )  ( n  > 0) (28) 

where L' is a scale length. Close to the singularity, S ( W )  takes the form (using (9) 
and (25)) 

This vanishes as Zt -P 0 so that (just as for potentials with a discontinuous derivative) 
the semiclassical reflection coefficient arises from the first integral in the series (10). 

After the elementary change of variable s = (L'pO/Zt)"z'i"+l) W-",  r becomes 

The integral is dominated by an isolated stationary point of the exponent, at s = s*, 
where 
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i.e. 

or from (25) 

This lies in the upper half-plane of W and approaches the origin in the x plane as 
h. + 0. The method of steepest descent now gives the semiclassical reflection coefficient 
as 

n / ( n + l )  2 l / ( n + l )  

xsin[(L+) ( 2 + - - ) ( i )  2(n + 1) 4(n + 1) (32) 

When n = 1 this formula may alternatively be derived by evaluating (30) exactly in 
terms of a modified Bessel function. 

Two things are evident from the formula (32). Firstly, the reflection is indeed 
transcendentally small as A + 0 but nevertheless greater than the reflection ((20) and 
(18)) from an analytic barrier. Secondly, as E and hence p o  vary, r oscillates and 
repeatedly vanishes. These zeros can be thought of as coming from destructive 
interference between waves reflected by the ‘shoulders’ where V(x) descends from 
its flat top, or, mathematically, between contributions from the stationary point W* 
in (31) and a similar one symmetrically disposed about the imaginary W axis. 

6. Numerical illustrations and discussion 

It is instructive to compare reflection coefficients for four barriers with different 
continuity properties, all constructed so as to have height Vo (i.e. V(O)= Vo) and 
thickness scale L (i.e. V(L) = Vo/e). In each case lrI2 will be computed from the 
foregoing formulae for energy E = 2V0 and expressed in terms of a parameter K ,  
which is semiclassically large, defined as 

K ~ p p o L / h .  (33) 

K is 2~ times the number of de Broglie wavelengths (at the barrier top) in the barrier 
thickness L. 

The first barrier Va(x) is analytic: 

v.(x) E V, exp(-x2/L2). 

From (21), its reflection is 
(34) 

1 

-K x 4(ln 2)’/2 lo dt(2 - 2r2)1’2) = exp( - 2 . 7 2 3 4 ~ ) .  (35) 
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The second and third barriers Vl(x) and V3(x) have discontinuous first and third 
derivatives respectively: 

V,(x) vo exp(-lx I/L) v3(x)= v0 e x p ( - l ~ \ ~ / ~ ~ ) .  (36) 

[r1l2 = 1/16K2 lr3l2 = 9/64K6. (37) 

From (27), these produce reflections 

The fourth barrier V,(x) has an essential singularity of the type (28) with n = 1 
and L' chosen to make V,(L) = l / e :  

Ve(X)= Vo(l-exp($)) a =ln[(l-e-')-']=0.458675. 

From (32), its reflection is 

Ire\' = $ 7 ~  ($Ka)'/* e~p[-4(Ka)"~]  sin2(2(Ka)'/* -$T) .  (38) 

Graphs of these four potentials are shown in figure 2. Note the large magnifications 
necessary to reveal the different behaviours at the maximum, especially the fact that 
V, is flatter than V, and V3, and also the fact that Ve plunges rapidly downwards 
from a shoulder at x - 0.04~5. 

The corresponding reflection coefficients are shown in figure 3 as functions of the 
semiclassical parameter. Note that it was necessary to plot -lg\lglr\21 against 1gK in 
order to accommodate the large variations in lrI2 required to display the limiting 
asymptotics, for which (r1(* > 1r3I2 > Irel2 > /raj2. The limiting forms are clearly attained 

Q950u--- 0 '5 \\\ 

ic 

3 
X I L  

Figure 2. Four barrier potentials with different continuity properties. a, analytic potential 
V,(x); 1, potential V , ( x )  with first derivative discontinuous; 3 ,  potential V,(x)  with third 
derivative discontinuous; e, essentially singular potential V,[x)  with all derivatives con- 
tinuous. 
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\ 

\ 

Figure 3. Graph of reflection coefficients for E = 2 V,  as a function of the semiclassical 
parameter K, for the four potentials depicted in figure 2. 

only when 1gK -3, i.e. K - 1000 and 1raI2- The curve for lre12 crosses that 
for lr3I2 when lg K - 2 .2 ;  this corresponds to a de Broglie wavelength 27rL/K - 0.4L, 
which is just where the shoulder in V, occurs (figure 2 ) .  

Of these four asymptotic reflection coefficients, only Ire)* has zeros as K (or E )  
varies. However, it is easy to devise cases where potentials which do not possess 
essential singularities can produce asymptotically perfect transmission as the result of 
reflections interfering destructively. Such behaviour can arise, for example, if V ( x )  
has two Nth order discontinuities, or is analytic with two complex turning points 
having the same values of Im W" (e.g. V ( x )  = V ,  exp(-x4/L4)). The following ques- 
tion naturally arises: are these zeros, predicted by the asymptotic formulae, approxima- 
tions to zeros of the exact reflection coefficient, or do they correspond to reflection 
minima at which lrI2 attains some higher order of semiclassical smallness without 
actually vanishing? The answer, which I do not know, must surely involve the fact 
that r is an analytic function of E (or h) which even for symmetric potentials has a 
complicated phase structure on the real axis (see e.g. BM). This suggests that the zeros 
might move off the real E or h axis under the perturbation from approximation to 
exactness. On the other hand, the rectangular barrier does have exact transmission 
resonances. 

Finally, it is worth pointing out that the calculation of the exceedingly small 
reflection coefficients in figure 3 was possible only by means of asymptotic formulae; 
it is a challenge to numerical analysts to produce comparable curves by 'exact' 
computation based directly on Schrodinger's equation. 
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Appendix 1. Evaluation of multiple-reflection integrals 

A first step in simplifying (17) is to write 

in which the E ensure convergence at s, + cc and t ,  + 00. The 6, and qn integrations 
may be performed successively, starting with &, to give 

Integrating over to gives a delta function in so provided s o > O  and this restricts the 
range of the subsequent s and t integrations to the unit m-dimensional simplex. A 
slight change of notation now gives 

with 
2 m  

x, 20 .  

The domain of integration, written explicitly, is 
1 1 - X I - X I  ,o"". . , X 2 , , - 1  lo dxl Jo"' dx2 lo dX3..  . dx2m (A41 

I m  =I, d51 Jo d52 * I, d52m( n = l  f i  (1- (2 , )52n-1)  

and this suggests changing variables to l1 . . . 12m defined by 

Xi = lj-l - ( j  ( l o =  1). (A51 
Thus (A3) becomes 

1 C l  i 2 m - 1  -1 

(A61 

The final substitution 

gives 



Semiclassically weak rej7ections 

Expansion of the m factors using 
m 

enables the integrals to be evaluated and leads to 
m m 

I,,, = 1 . . . 1 [ k : ( k l  + k 2 ) 2 .  . . ( k l +  . . . + k,,,)2]-' 
k i - 1  k m = l  

which can be written 

But this is 
m 

I,,, = coefficient of x 2m in n 
n = l  

=coefficient of x 2 m  in (sinh .rrx)/.rrx 

=7T2'"/(2m +I)! 

3703 

('49) 

Appendix 2. Nth order semiclassical wave matching 

In the case considered in § 4, where the Nth derivative of V(x) is discontinuous at 
x = 0, let the exact wavefunction for x S 0 be represented as 

From the Schrodinger equation (2), P,(x) satisfy 

(P*(X))~ = p2(x) f i A  dP,(x)/dx. (A14) 

Matching $ and d$/dx at x = 0 gives 

(PI(+& 1 -P+(-E 1) 
( P - ( + E ) + P + ( + & ) ) '  

r = -  

To lowest order in h, 

P*(f&) =:Po (A16) 
and (A15) gives r = 0. But (A14) shows that successive higher-order approximations 
in A involve successive derivatives of p(x), so that the problem now is to approximate 
the function P+ to the lowest order in which it involves the Nth derivative of p(x).  
To this end, write 

P + ( x ) =  2 R'Pj(X) (A171 I=o 
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where the terms Pi satisfy the following recursion relation obtained from (A14): 

Therefore, using the notation (24), 

Pj(x) = (i/2p(x))’pj(x)+lower derivatives of p ( x )  (-419) 

PI-(+&) -ps(-&) ( i h / 2 P o ) N ( P N ( + & ) - P N r ( - & ) ) .  (A201 

Together with (A16) for the denominator of (A15) this gives precisely the formula 
(27) for r obtained from the first term of the multiple reflection series. 

so that to lowest order the numerator of (A15) is 
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